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Abstract— Vision-based intelligent systems like automatic
driving or driving assistance can be improved by enhancing
the visibility of the scenes captured in bad weather conditions.
In particular, many image dehazing algorithms (DHAs) have been
proposed to facilitate such applications in hazy weather. Contrary
to the substantial progress of DHA developing, the quality eval-
uation of DHAs falls behind. Generally, DHAs can be evaluated
qualitatively by human subjects or quantitatively by objective
quality measures. Compared with the subjective evaluation which
is time consuming and difficult to apply, objective measures with
quantitative results are more needed in practical systems. But in
the literature, very few measures are widely utilized, and even less
measures correlate well with the overall dehazing quality (DHQ).
In this paper, we study the DHQ evaluation using real hazy
images systematically. We first construct a DHQ database, which
is the largest of its kind so far and includes 1750 dehazed images
generated from 250 real hazy images of various haze densities
using seven representative DHAs. A subjective quality evaluation
study is subsequently conducted on the DHQ database. Then,
we propose an objective DHQ index (DHQI) by extracting and
fusing three groups of features, including: 1) haze-removing fea-
tures; 2) structure-preserving features; and 3) over-enhancement
features, which have captured the most key aspects of dehazing.
DHQI can be utilized to evaluate DHAs or optimize practical
dehazing systems. Validations on the constructed DHQ database
and three other databases with synthetic haze have verified
the effectiveness of DHQI. Finally, we give an overview of the
current DHA quality evaluation strategies, discuss their merits
and demerits, and give some suggestions on systematic DHA
quality evaluation. The DHQ database and the code of DHQI
will be released to facilitate further research.

Index Terms— Single image dehazing, dehazed image, quality
assessment, dehazing algorithm evaluation.
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I. INTRODUCTION

V ISION based automatic driving and other driving assis-
tance systems may suffer from low visibility problems

in bad weather conditions such as haze, rain, and dust. Com-
pared with the human visual systems, the relevant techniques
required by the driving assistance systems such as lane,
vehicle and pedestrian detection are more likely to suffer
from the visibility problems. Since perfect weather conditions
may not be asked for, many specific techniques have been
proposed for visibility enhancement under various extreme
weather conditions [1]–[5]. Among them, haze removal has
been widely researched and many single image dehazing
algorithms (DHAs) have been proposed due to the more and
more frequent hazy weather [6]–[16]. DHAs can be utilized
to enhance the visibility and restore the image details in
practical image capturing systems, especially the systems used
outdoors.

A. Single Image Dehazing Algorithms

Images captured in hazy weather can be described by the
following model [17], which is the basis of many image
dehazing studies

I(i, j) = J(i, j)e−βd(i, j ) + A(1 − e−βd(i, j )), (1)

where I is the captured image suffering from haze, J is the
real scene image, A is the global atmospheric light, t (i, j) =
e−βd(i, j ) is the medium transmission, β is the scattering
coefficient of the atmosphere, d indicates the scene depth,
and i, j are pixel indexes. The first term J(i, j)e−βd(i, j ) is
attenuation, which describes the scene radiance and its decay
in the atmosphere; whereas the second term A(1−e−βd(i, j )) is
airlight, which describes the environmental illumination. The
objective of dehazing is to estimate J, t , and A from I.

A latest review of single image DHAs is given in [15].
We shortly review several representative DHAs here. Fattal [6]
solved image dehazing as a non-linear inverse problem. A dark
channel prior was introduced in [8] for dehazing, which is
based on a phenomenon that at least one color channel has
very low intensity values at some pixels. Tarel and Hautière [7]
solved dehazing as a particular filtering problem. Another
method based on guided joint bilateral filter was introduced
in [9]. Meng et al. [10] proposed a regularization method to
remove haze. Lai et al. [12] derived the optimal transmission
map under some scene priors. Berman et al. [13] introduced
a non-local scene prior which describes that color clusters in
RGB space are distributed along lines. Some other methods
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TABLE I

TWO QUANTITATIVE DHA EVALUATION STRATEGIES

learned a mapping from synthetic hazy images to the haze-free
images, for example a random forest based method was used
in [11], and an end-to-end system using neural network was
introduced in [14]. Readers can refer to [15] for more DHAs.

B. Quality Evaluation of DHAs

Besides DHAs themselves, the evaluation of DHAs is also
very important. When proposing a DHA, one needs to evaluate
it and compare it with the state-of-the-art, or when applying
DHAs, one needs to select the best algorithm. Moreover,
an effective and comprehensive evaluation criterion can pro-
mote image dehazing research forward in a right direction.
In the current literature, most DHAs are evaluated from two
aspects: qualitative evaluation given by human subjects, and
quantitative evaluation given by objective measures. Qualita-
tive evaluation is straightforward and accurate, since humans
are often the ultimate receiver of the dehazed images. It is
the most recognized evaluation strategy, and most DHAs
are evaluated qualitatively when proposed [6]–[16], [18]. But
it suffers from several critical disadvantages. First, it is
time-consuming and expensive, which makes large scale
evaluation difficult. Then, the qualitative evaluation becomes
“controllable”, since there is no widely utilized large scale
evaluation set, and the selected limited number of hazy images
only occupy a tiny subset of real practices. Moreover, subjec-
tive evaluation is difficult to be applied and embedded into
practical systems, thus timely optimization for the system also
becomes tough.

Considering the drawbacks of qualitative evaluation, quanti-
tative evaluation via objective quality measures is introduced.
Generally, two strategies can be adopted for quantitative
evaluation: using real hazy images and using synthetic hazy
images. Table I has summarized and compared these two
strategies. Using real hazy images is the more straightfor-
ward way. It utilizes some measures to assess the quality of
dehazed images generated from real hazy images directly [7].
It is a no-reference (NR)1 image quality assessment (IQA)

1Though some measures use the hazy image as a “reference”, this “refer-
ence” is different from the traditional perfect quality reference, thus we still
describe these methods as NR in this paper.

Fig. 1. A comparison of synthetic haze and real haze. (a) Synthetic haze.
(b) Real haze.

problem since the ground-truth haze-free image is not avail-
able. It is difficult due to the complexity of dehazing. During
recent years, some quality measures are proposed for this
objective [19]–[23]. In [23], three descriptors are proposed
by comparing the gradient of the visible edges of the images
before and after dehazing. But these descriptors only measure
the dehazing effect, rather than the overall dehazing quality.
There are also some measures proposed for quality assessment
of enhanced images [19]–[22], since dehazing is an image
enhancement process. But these measures are not specifically
designed for dehazing and are not effective enough for DHA
quality evaluation.

Another quantitative evaluation strategy is using synthetic
hazy images [11], [12], [14]–[16], [24]. An overall discussion
of this strategy is given in [24], and an effective quality
measure for this strategy is also proposed. These methods
synthesize hazy images from haze-free images and the cor-
responding depth using the widely utilized haze model. The
haze-free images are taken as the ground-truth of dehazing,
and full-reference (FR) IQA measures can be utilized as
the evaluation criteria. It is easy to conduct quantitative
evaluation using such strategy. The main drawback of this
strategy is that real haze may be different from the synthetic
haze. As illustrated in Fig. 1, synthetic haze and real haze
look quite different. The practical haze may not be perfectly
modeled by the ideal haze model. The synthetic haze is usually
assumed to be homogenous, whereas the real haze is often
far more complicated than that. Moreover, synthetic hazy
and many DHAs are both based on the ideal haze model,
which may reduce the difficulty of dehazing. A good synthetic
haze-removing effect does not necessarily guarantee a good
real haze-removing effect. Thus this strategy can be utilized
to evaluate DHAs from one aspect, but quantitative evaluation
on real hazy images is still needed.

C. Contributions of This Paper

In this paper, we study dehazing quality evaluation using
real hazy images systematically. To facilitate the research,
we first construct a large dehazing quality (DHQ) database
which includes 1,750 dehazed images created from 250 hazy
images using 7 representative DHAs. We select 250 hazy
images of various haze densities from [25], and 7 repre-
sentative DHAs are selected for quality evaluation. Then
a subjective quality evaluation study is conducted on the
DHQ database. The performance of all compared DHAs are
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analyzed and the mean opinion scores (MOSs) of all dehazed
images are collected for the following DHA evaluation study.
To the best of our knowledge, the DHQ database is the largest
dehazing quality database so far which includes human labeled
ground-truth quality scores of the dehazed images.

To evaluate DHAs on real hazy images, we propose a dehaz-
ing quality index (DHQI) for dehazed images. A good DHA
should be able to remove haze as much as possible, preserve
image structures from damage, and avoid side-effects such
as over-enhancement. Thus we extract 3 groups of features,
including 1) haze-removing features, 2) structure-preserving
features, and 3) over-enhancement features, to describe the
above 3 key objectives of dehazing. The extracted features are
integrated to the overall DHQI via a regression module, which
is trained using the collected subjective evaluation data. The
effectiveness of DHQI is verified on the DHQ database and
3 other databases with synthetic haze. DHQI can be used to
evaluate DHAs or optimize practical dehazing systems.

One major use of dehazing quality measure is to evaluate
DHAs, thus we give an overview of the current DHA quality
evaluation methods and discuss their merits and demerits.
We use the subjective quality evaluation data collected in
this study and another database to compare the two typical
strategies of quantitative DHA evaluation, and based on the
analyses, we give some suggestions on the overall and sys-
tematic DHA quality evaluation. The overview, discussions,
and suggestions is the third contribution of this study besides
the constructed DHQ database and the proposed DHQI.

The rest of this paper is organized as follows. Section II
presents the subjective quality evaluation study. In Section III,
we describe the details of the proposed DHQI. Experimental
verification is given in Section IV. In Section V, we give some
discussions and suggestions on systematic quality evaluation
of DHAs. Section VI concludes this paper.

II. SUBJECTIVE QUALITY EVALUATION

OF DEHAZED IMAGES

For further objective dehazing quality evaluation study,
we construct a large scale dehazing quality (DHQ) database,
which includes 1,750 dehazed images, and conduct a subjec-
tive quality evaluation study on the DHQ database. To the best
of our knowledge, the DHQ database is the largest dehazing
quality database which includes human labeled ground-truth
quality scores of the dehazed images.

A. Hazy and Dehazed Images

We select 250 hazy images from a total of 500 hazy images
used in [25]. The images are labeled with the human-rated
haze densities. We select 250 of them which have various haze
densities to test the DHAs’ effectiveness under different haze
conditions. Seven representative DHAs, including Fattal08 [6],
Tarel09 [7], He09 [8], Xiao12 [9], Meng13 [10], Tang14 [11],
and Lai15 [12], are selected to process the hazy images.
A total of 1,750 dehazed images are generated. All dehazed
images and the corresponding hazy images constitute the DHQ
database.

TABLE II

SUBJECTIVE EXPERIMENT SETTINGS

B. Subjective Quality Evaluation

We conduct a subjective quality evaluation study on the
DHQ database. A double-stimulus strategy is adopted, and
both the hazy and dehazed images are shown side-by-side.
Subjects are asked to rate the overall dehazing quality using
a five-grade categorical rating scale. Subjects are suggested
to give an overall quality rating mainly from 2 aspects: if
the haze is totally removed, and if the DHA introduces any
artifacts. Each pair of images is shown for 2 seconds, with a
1 second gray image shown in between. All 1,750 images
are randomly and evenly divided into 5 sessions. A total
of 54 subjects participate in the tests, and most of them
take part in 3 sessions, with a few subjects only take part
in 1 session. Each image is rated by 30 subjects. A 5 minutes
break is given between sessions to avoid fatigue. All test
images are randomly shown on a LED monitor, which is
calibrated according to the recommendations given by ITU-R
BT.500-13 [26]. The subjects are seated at a viewing distance
of around 3 times the screen height in a laboratory environment
with normal indoor illumination conditions. A summary of the
experiment settings is given in Table II.

C. Subjective Data Processing

We follow the practices in [24] and [27] to process the raw
subjective ratings. If the raw quality rating for an image is
far from the average (2 or

√
20 standard deviations (stds) for

the Gaussian or non-Gaussian case), it is detected as outlier,
and a subject with more than 5% outlier ratings is detected
as outlier subject. Both outlier ratings and outlier subjects
are excluded from following processes. The ratings for every
subject is normalized, and the normalized ratings for an image
are averaged over all valid subjects to the mean opinion score
(MOS). The MOSs are taken as the ground-truth quality of
the dehazing, and are included in the DHQ database. Fig. 2
illustrates a histogram of the MOSs of the DHQ database. It is
observed that the perceptual quality spreads over the whole
quality range.

III. OBJECTIVE DEHAZING QUALITY EVALUATION

To evaluate DHA quantitatively, we propose a dehaz-
ing quality index (DHQI) for dehazed images. We measure
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Fig. 2. Histogram of the MOSs of the DHQ database.

the quality from the following 3 key aspects of dehazing:
haze-removing, structure-preserving, and over-enhancement.
We extract 3 groups of features to measure the quality of these
3 aspects, and integrate these features into an overall dehazing
quality.

A. Pre-Processing

The extracted 3 groups of features share some common
processes, which are described here as the pre-processing.
Given an image I, we first compute the local mean and
variance [27]–[29]

μ(i, j) =
∑

k,l

w(k, l)I(i + k, j + l), (2)

σ (i, j) =
[ ∑

k,l

w(k, l)
(
I(i + k, j + l) − μ(i, j)

)2
] 1

2
, (3)

where i, j are pixel indexes, μ is the local mean, and w is
a local Gaussian weighting window. Then we normalize the
image

Î(i, j) = I(i, j) − μ(i, j)

σ (i, j) + 1
. (4)

For the dehazed image Id and hazy image Ih , we follow
the same processes and compute their local mean, variance,
and normalized image as μd , μh , σd , σh , Îd , Îh , where the
subscripts d and h indicate the dehazed and hazy images,
respectively. We only utilize the hazy image when measuring
the image structure-preserving and over-enhancement, thus if
without subscript, we generally indicate the dehazed image.
Similarly, we only utilize color information when measuring
the haze-removing, thus if without specific explanation, we are
handling the converted gray-scale image.

B. Haze-Removing

Haze mainly introduces visibility problems such as contrast
reduction and loss of image details, while dehazing tries to
recover these lost contrast and image details. We use several
haze-aware descriptors to detect the haze left in the dehazed

image to evaluate the haze-removing effect. More haze left
generally indicates worse dehazing quality.

A dark channel prior (DCP) is found in [8], which describes
that at least one color channel has very low intensity in the
haze-free images. The existence of haze can break such prior,
and heavier haze generally leads to brighter dark channel.
We use a pixel-wise DCP to measure the haze left in the
dehazed image

Idark(i, j) = min
c∈{R,G,B} Ic(i, j), (5)

where c ∈ {R, G, B} indicates the RGB channels of the
dehazed image.

Images with less haze generally contain more image details,
thus we use image entropy to measure the image details of the
dehazed image

H = −
∑

i

pi log(pi), (6)

where p = [p1, . . . , p256] denotes the histogram probability
of the luminance of the dehazed image.

Another main objective of dehazing is to recover the con-
trast, we utilize 3 descriptors to measure the contrast of the
dehazed image. First, the local variance calculated via Eq.(3)
is used. Considering that the local variance σ generally varies
with the local mean μ, we derive the normalized local variance
as the second contrast feature

η = σ

μ + 1
. (7)

This feature has been previously used as haze-aware features
in [24] and [25]. We extract the contrast energy (CE) [30] as
the third contrast feature, which estimates perceived image
local contrast. The C E has been previously used in [25]
for haze density prediction, and it has been proved to be
an effective haze-aware contrast feature. Specifically, CE is
computed as

CE = ρ · Z(I)
Z(I) + ρ · κ

− τ, (8)

where Z(I) =
√

(I ⊗ gx)2 + (I ⊗ gy)2, ⊗ indicates convolu-
tion, gx and gy are the horizontal and vertical second-order
derivatives of the Gaussian function, respectively, ρ is the
maximum value of Z(I), κ controls the contrast gain, and τ
is the noise threshold used to constrain the noise. The readers
can refer to [25] and [30] for more details of CE. Fig. 3 has
illustrated examples of the related haze-removing feature maps
utilized by the proposed method.

C. Structure-Preserving

Many IQA measures utilize structural features due to
its effectiveness of capturing image degradations [28], [29],
[31], [32]. Image structure is also an important cue for dehaz-
ing quality prediction, since DHAs sometimes can introduce
structural artifacts. Fig. 4 illustrates two typical examples
of structural artifacts introduced by dehazing. One typical
failure occurs when some DHAs utilize an aggressive strategy
trying to remove the haze completely, but they may dam-
age the intrinsic image structures. Another typical structural
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Fig. 3. An illustration of haze-removing feature maps. From left to right are I, Idark , σ , η, CE, respectively.

Fig. 4. Two typical structural artifacts introduced by DHAs: intrinsic structure damage (top) and over-enhancement (bottom). Related image structural feature
maps are also illustrated, including Ih , Id , sσ , sη, s Î (from left to right).

artifact is the over-enhancement, which is generally observed
in the low contrast areas. Some hardly-observed image
details are taken as the image structures and enhanced out.
We extract structure-preserving and over-enhancement features
to describe such structural damage and over-enhancement,
respectively.

In FR IQA, it is easy to capture structural damage by
comparing the structures of the reference and distorted images.
But we do not have a perfect quality reference when evaluating
DHAs on real hazy images. Considering that we only utilize
the structural features to describe the structural damage which
significantly changes the image structures, we use the hazy
image as a reference and measure the structural similarity
between the hazy and dehazed images. For the purpose of mea-
suring structural damage which occurs either in the texture-
rich or very flat regions, the structure of the hazy image can
roughly provide an approximate reference.

Specifically, we measure the image structure damage by
computing the structural similarity between Id and Ih using
3 structural features. First, variance similarity is derived

sσ = 2σd · σh + �1

σ 2
d + σ 2

h + �1

, (9)

where �1 is a constant used to avoid instability. Then normal-
ized variance similarity is derived

sη = 2ηd · ηh + �2

η2
d + η2

h + �2

, (10)

where �2 has the same function as �1 , ηd and ηh are the
dehazed and hazy images’ normalized variance calculated via

Eq.(7). Finally is the normalized image similarity

s Î = 2Î�
d · Î�

h

Î�2
d + Î�2

h

, (11)

where Î�
d = Îd +3 and Î�

h = Îh +3 are the normalized dehazed
and hazy images. We add a constant 3 to scale the normalized
image to a positive range.

D. Over-Enhancement

As described in Section III-C and illustrated in Fig. 4,
over-enhancement is another typical structural artifact. It is
one kind of side-effect introduced by dehazing, and some
hardly-observed image details are enhanced as image struc-
tures. As demonstrated in [24], such over-enhancement in the
low contrast areas which include no obvious image structure
is extremely harmful to the perceptual quality. We still utilize
structural features to describe the over-enhancement. Specifi-
cally, the over-enhancement is described by the pooling of the
structural similarity maps in the low contrast areas

oφ = 1

N

∑

(i, j )∈


sφ(i, j), (12)

where the subscript φ ∈ {σ, η, Î } indicates the structure fea-
tures described above, N is a normalization factor representing
the number of pixels in set 
 which indicates the low contrast
areas and is defined as


 = {
(i, j)|σh(i, j) < E(σh),

σd (i, j) − σh(i, j) > E(σd − σh)
}
, (13)
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Fig. 5. A framework of the proposed DHQI method.

TABLE III

OVERVIEW OF FEATURES FOR DEHAZING QUALITY

where E(·) calculates the average of all values in the matrix,

 represents all pixels whose variance is lower than the
average and variance enhancement is larger than the average.

Prior to dehazing, some hazy images undergo some com-
pression. The compression artifacts are hardly observed in the
hazy image due to proper control of the compression degree,
but they may be taken as the image structures and enhanced
out during dehazing. Considering that JPEG is the most widely
used image compression method and blockiness is also easily
enhanced during dehazing, we estimate blockiness as one kind
of over-enhancement. We detect the corners and edges in the
dehazed image, and calculate their regularity as the blockiness

b =
∑

i, j c�(i, j)
∑

i, j c(i, j))
·

∑
i, j e�(i, j)

∑
i, j e(i, j))

, (14)

where c is the corner map, in which c(i, j) = 1 or 0 indicates
that a corner is or is not detected at (i, j), c� is similar to c,
but only corners at the 8 ×8 block boundaries are detected, e,
e� are edge maps similar to c, c�, respectively. This feature has
been proven effective for predicting the quality of block-based
compressed images and videos in [27] and [31].

E. Feature Pooling and Regression

As illustrated in Fig. 5, DHQI mainly consists of two mod-
ules: feature extraction described above, and feature regression
described in this section. The extracted 3 groups of features
capture different aspects of the dehazing, including haze-
removing, structure-preserving, and over-enhancement. These
features include both single feature values, e.g., image entropy,
over-enhancement, and 2D feature maps, e.g., DCP, (nor-
malized) local variance, contrast energy, structural similarity.
To predict a single value quality score from the extracted
features, we first conduct feature pooling for the 2D feature
maps. Though content-based or visual attention-based pooling
has been proven effective in IQA [33]–[35], mean pooling
is adopted in our method for simplicity. All features are
pooled into single values, and are catenated to a feature vector
f = [ f1, f2, . . . , f12]. An overview of the extracted features
is given in Table III.

The last step is feature regression. Considering the successes
of support vector regression (SVR) and random forest (RF),
we select SVR and RF for regression. As illustrated in Fig. 5,
the model training and testing share the same framework.
We use labeled dehazing image pairs to train the regressor,
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which then can be utilized to predict the quality of any dehazed
image pair. Given the features fi = [ f1, . . . , f12], the corre-
sponding quality label qi (MOS) and the training image set
� , we can train the regressor using either SVR or RF

regressor = TRAIN(fi , qi ), i ∈ �, (15)

where i is the image index. Then given the quality feature
f = [ f1, . . . , f12] of any test image, we can predict the quality
using the pre-trained regressor

q = PREDICT(f, regressor). (16)

We mainly use SVR as the regressor in this paper, but we will
also test the RF regressor in the experiments. LIBSVM [36] is
adopted to implement SVR with a radial basis function (RBF)
kernel. We follow the common SVR parameter settings used in
the training of mainstream IQA measures. The RF implemen-
tation for MATLAB is utilized [37], and we use the default
parameters. DHQI needs labeled data for training, but after
training it can predict the quality of dehazing using any
dehazing image pairs.

IV. EXPERIMENTAL RESULTS

A. Experimental Protocol

1) Test Databases: The proposed DHQI is validated on the
following two categories of databases:

• Database with real haze, i.e., the DHQ database con-
structed in this paper. It includes 1,750 dehazed images
generated from 250 real hazy images of various haze den-
sities using 7 representative DHAs, and the corresponding
subjective rating data. An overview of this database has
been given in Section II. The proposed DHQI is mainly
validated on this database.

• Databases with synthetic haze, including the SHRQ [24]
database, and the reprocessed D-HAZY [38] and
FRIDA [39] databases. Though DHQI is mainly designed
for dehazing quality evaluation using real hazy images,
we test DHQI on dehazed images generated from syn-
thetic hazy images as a complementary. The SHRQ
database (regular image subset) consists of 360 dehazed
images which are generated from 45 hazy images
synthesized from 45 reference haze-free images, and
the corresponding subjective rating data. The evalu-
ated DHAs include Fattal08 [6], Tarel09 [7], He09 [8],
Xiao12 [9], Meng13 [10], Lai15 [12], Berman16 [13],
and Cai16 [14]. In the D-HAZY and FRIDA databases,
only synthetic hazy images and the reference haze-free
images are available. We reprocess them by generating
the dehazed images from the synthetic hazy images
using the same 8 DHAs used in the SHRQ database.
A total of 184, 576 dehazed images generated from 23,
72 synthetic hazy images are available in the reprocessed
D-HAZY and FRIDA databases, respectively. Note that
only the Middelbury subset of the original D-HAZY
database is used to reduce the computation. Since no
subjective rating rata is available in the reprocessed
D-HAZY and FRIDA databases, we use the quality
scores computed by the specifically designed FR dehazing

quality measure Min18 [24] as the ground-truth quality
scores.

All the above databases including the DHQ, SHRQ, and
reprocessed D-HAZY and FRIDA databases will be publicly
available to facilitate further research.

2) Competitors: Besides DHQI, we also test some quality
measures which may be effective for dehazing quality evalua-
tion. Specifically, the following two types of quality measures
are tested:

• Blind evaluators related to haze removal and
contrast-enhancement, including quality measures
for contrast-enhanced images, e.g., BIQME [19],
Fang15 [20], NIQMC [22], the three evaluators e, r and
N S introduced in [23], and the haze density estimator
FADE [25].

General-purpose
• blind IQA measures, including BRISQUE [40],

CORNIA [41], IL-NIQE [42], BPRI [43], and
BMPRI [44] which are assumed to be able to handle
general IQA problems.

We believe the above two types of measures have included the
possible quality measures which may be effective for dehazing
quality evaluation. For all competitors, we use the original
implementations released by the authors.

3) Evaluation Criteria: We use the following five-parameter
logistic function which is frequently used in IQA model
evaluation to map the predicted quality scores [27], [43], [44]

q � = λ1

(
1

2
− 1

1 + eλ2(q−λ3)

)
+ λ4q + λ5, (17)

where q, q � are the original and mapped quality scores, respec-
tively, {λi |i = 1, 2, . . . , 5} are five parameters determined
through curve fitting using q and MOSs. Then the consistency
between q � and MOSs is measured as the performance of
the IQA model. We choose the following 3 commonly used
consistency evaluation criteria:

• Spearman rank-order correlation coefficient (SRCC),
which measures the monotonicity of the IQA model.

• Pearson linear correlation coefficient (PLCC), which mea-
sures the IQA model’s prediction linearity.

• Root-mean-square error (RMSE), which is a prediction
accuracy measure.

B. Performance Evaluation With Real Haze

Since DHQI is designed for dehazing quality evaluation
using real hazy images, we mainly test DHQI on the DHQ
database constructed in this paper.

1) Performance Comparison: As described in Section III-E,
DHQI includes a regression module which requires train-
ing. We follow the common practices of opinion-aware IQA
model training [27], [40], [45], [46], and split the whole DHQ
database into a training set and a testing set, which are
completely separated. The training set includes a percentage
of ratio dehazed images which are randomly selected, and
the rest 1 − ratio dehazed images are left to the testing
set. The dehazed images corresponding to the same hazy
image are divided into the same set to ensure a complete
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TABLE IV

PERFORMANCE EVALUATION WITH REAL HAZE (ON THE DHQ DATABASE)

separation of the training and testing data. We repeat this
training-testing process for 1,000 times and report the median
SRCC, PLCC, and RMSE performance. For the training-free
methods, we conduct the same splitting and only test the
performance on the testing set for fair comparison. Normally,
a 80% train – 20% test split is adopted in the IQA literature.
We also adopt this split strategy, but we add two more
strategies: 50% train – 50% test, 20% train – 80% test to
test the models’ dependency on the amount of training data.

The performance is listed in Table IV, from which we have
several observations. First, DHQI performs the best among
all models, which verifies the effectiveness of the proposed
method. Second, some general-purpose blind IQA measures
have certain ability to predict the quality of dehazed images
after retraining. It is because a lot of measures are based
on natural scene statistics (NSS), while the distortions of
dehazing, for example, the existence of haze and the structural
damage, can violate the NSS and be captured by these models.
But these measures have not considered the characteristics
of dehazing, and they are not effective enough for dehazing
quality evaluation. Third, the models which require MOSs
for training perform better, which is not surprising since
these models can adapt themselves to the dehazing distor-
tions. Fourth, though some measures are designed for contrast
enhancement quality assessment, e.g., BIQME, Fang15, and
NIQMC, their performance is not impressive. It is mostly
due to that the dehazing quality is more complicated than
contrast enhancement quality as described in Section I. Last,
DHQI shows quite high performance (a SRCC of 0.8380) even
only 20% of data is used for training. Moreover, compared
with other training-based measures, DHQI shows the least
performance drop when reducing the training data, which
suggests good model generalizability.

2) Statistical Significance Test: We conduct statistical test
to verify if the performance differences between models
are significant. Specifically, t-test [47] is conducted on the
SRCC values obtained from the 1,000 80% train – 20% test
splits. We compare every pairs of models, and list the results
in Table V. A 1/0/- symbol indicates that the row model is
statistically better than/worse than/indistinguishable from the

TABLE V

STATISTICAL SIGNIFICANCE TEST RESULTS ON THE DHQ DATABASE.
A 1/0/- SYMBOL INDICATES THAT THE ROW MODEL IS

STATISTICALLY BETTER THAN/WORSE THAN/
INDISTINGUISHABLE FROM THE COLUMN

MODEL (WITH 95% CONFIDENCE),
RESPECTIVELY. A-M ARE MODEL

INDEXES GIVEN IN TABLE IV

column model (with a confidence of 95%). Similar results
can be obtained using other split strategies and performance
evaluation criteria. The significant superiority of DHQI is
evident. Most observations described in the previous paragraph
are also proved to be significant.

3) Feature Analysis: To have an intuitive understanding
of how the DHQI features correlate with the human rated
dehazing quality, we illustrate the correlation between single
features and the MOSs in Fig. 6. Note that no training is
utilized here, we directly test each feature’s SRCC and PLCC
performance on the overall DHQ database. It is observed
that some single features show quite competitive performance,
which is comparable to current best-performing algorithms
even though they are trained on this database. Another
observation is that several best-performing single features are
structure-relevant features. It suggests that avoiding structural
artifacts is the most important cue for dehazing quality. More
detailed verification is given in the ablation experiment.

4) Contribution of Different Components: We conduct sev-
eral ablation experiments to test the contributions of different



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MIN et al.: OBJECTIVE QUALITY EVALUATION OF DEHAZED IMAGES 9

Fig. 6. Performance (SRCC and PLCC) of single features on the DHQ database. f1- f12 are feature IDs given in Table III.

TABLE VI

PERFORMANCE OF DIFFERENT FEATURE GROUPS

feature components of DHQI. Specifically, features listed
in Table III are grouped according to the category, and we
test the contributions of different feature groups. Specifically,
we test the performance of the following feature groups:

• G1: Only haze-removing features.
• G2: Only structure-preserving features.
• G3: Only over-enhancement features.
• G4: Structure-preserving and over-enhancement features.
• G5: Haze-removing and over-enhancement features.
• G6: Haze-removing and structure-preserving features.

The same training-testing processes described in Section
IV-B1 are conducted, and the results are summarized
in Table VI.

Agreeing with the analyses given in Section IV-B3, it is
observed that structure-preserving features contribute the most
to DHQI. Besides, using only structure-preserving or over-
enhancement features can achieve considerable performances
(SRCC of 0.7893 or 0.7353 when 80% of data is used for
training), which suggests that avoiding structural artifacts as
described in Section III-C and Section III-D is very important
for dehazing from a perceptual quality perspective of view.
Haze-removing features also contribute to DHQI, which is not
surprising since removing haze is the primary objective of

Fig. 7. Performance of DHQI using different regressors.

dehazing and more haze left in the dehazed image indicates
lower dehazing quality.

5) Performance of Using Different Regressors: As described
in Section III-E, different regressors can be utilized to predict
the final quality. We test the performance of DHQI using dif-
ferent regressors, i.e., SVR and RF. The same training-testing
processes described in Section IV-B1 are conducted, and the
performance is illustrated in Fig. 7. It is observed that DHQI
achieves considerable performances when using SVR or RF,
which suggests that what contributes most to DHQI is feature
extraction rather than feature regression.

6) Computational Complexity: It is important for algo-
rithms to have low computational complexity in practical use.
We analyze the computational complexity of all compared
measures by comparing the average running cost (seconds/
image). The experiments are conducted with MATLAB
R2016a operating on a computer with Intel Core i7-6700K
CPU @4.00 GHz and 32 GB RAM. We select 100 images
with a fixed resolution of 512×512 as the test set. The results
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TABLE VII

PERFORMANCE EVALUATION WITH SYNTHETIC HAZE (ON THE SHRQ DATABASE)

are listed in Table IV. For all competitors, we use the original
implementations released by the authors. It is observed that
DHQI has considerable low computational complexity and it
is one of the fast measures.

C. Performance Evaluation With Synthetic Haze

As described in Section I, DHAs in the current literature
are evaluated via two strategies: using synthetic hazy images
and using real hazy images. An overall discussion of the
strategy of using synthetic hazy images is given in [24]. Under
this strategy, the haze-free images are available, and they can
be used as the reference. Under this circumstance, FR IQA
measures generally perform better, and it is less meaningful
to develop and use blind measures. The proposed DHQI
follows another strategy and it is designed for dehazing quality
evaluation using real hazy images. Since the reference is not
available, DHQI has to perform quality evaluation in a NR
manner. Though DHQI is designed for real haze, we still try
it with synthetic haze to test its generalizability.

1) Evaluation on the SHRQ Database (With Subjective
Data): The SHRQ database is constructed in [24], and sub-
jective quality evaluation data of all dehazed images is also
available. A brief introduction of the SHRQ database has been
given in Section IV-A1. Readers can also refer to [24] for
more details. We test the DHQI and competitors on the regular
image subset of this database. Specifically, we follow the same
evaluation protocols described in Section IV-B1, and compare
DHQI with the same competitors on the SHRQ database. The
experimental results are summarized in Table VII. Though
DHQI is not so effective as evaluating real dehazed images,
it still shows considerable performance, and it performs the
best among all competitors. It suggests that DHQI is also effec-
tive for synthetic haze removing quality evaluation, though FR
measures are often better choices under such circumstances.

Besides NR measures, FR IQA measures can be utilized
when using synthetic hazy images. According to the perfor-
mance on the SHRQ database, we select the 5 best-performing
FR measures, including VIF [48], FSIM [49], GMSD [50],
PSIM [51], as well as the specifically designed FR dehazing
quality measure Min18 [24], and then compare them with
DHQI. Since DHQI requires training, we adopt the same 80%
train – 20% test split used in previous experiments. In Fig. 8,

Fig. 8. Mean and standard error bar of the SRCC values obtained from the
1,000 train-test trials for the best-performing FR IQA measures on the SHRQ
database.

we illustrate the mean and std of the SRCC values obtained
from the 1,000 train-test splits. It is not surprising that the
specifically designed FR dehazing quality measure Min18 [24]
performs the best. Except for Min18 [24], DHQI performs
the best, though it does not utilize the haze-free image as
a reference while the rest are FR measures.

2) Evaluation on the Reprocessed D-HAZY and FRIDA
Databases (Without Subjective Data): Besides the SHRQ
database which includes subjective rating data, there are
also some databases without subjective data, for example the
D-HAZY [38] and FRIDA [39] databases. These databases
cionsist of synthetic hazy images and the corresponding refer-
ence haze-free images. We reprocess the D-HAZY and FRIDA
databases by generating dehazed images from the synthetic
hazy images using 8 representative DHAs and labeling the
dehazed images using the specifically designed FR dehaz-
ing quality measure Min18 [24]. A brief introduction of the
reprocessed D-HAZY and FRIDA databases has been given
in Section IV-A1. We follow the same evaluation protocols
described in Section IV-C1 and Section IV-B1. The only
difference is that we use the objective scores labeled by
Min18 [24] to replace the subjective rating scores. The perfor-
mance comparison results are listed in Table VIII. Only SRCC
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TABLE VIII

SRCC PERFORMANCE EVALUATION WITH SYNTHETIC HAZE (ON THE REPROCESSED D-HAZY AND FRIDA DATABASES)

is reported for simplicity, but similar results can be obtained
using other evaluation criteria. It is observed that DHQI shows
the best performance among all competitors, which agrees with
the previous validations on the DHQ and SHRQ databases.

V. DISCUSSIONS AND SUGGESTIONS ON SYSTEMATIC

QUALITY EVALUATION OF DHAS

One major use of dehazing quality measure is to evaluate
DHAs. In this section, we first summarize the current DHA
evaluation methods and give some discussions. Then we com-
pare the two typical strategies of quantitative DHA evaluation,
and after that, we give some suggestions on conducting overall
and systematic DHA quality evaluation.

A. Summary of Current DHA Quality Evaluation Methods

Compared with the substantial progress of DHA developing
[6]–[15], the quality evaluation of DHAs falls short and
needs more work. Though there are some DHA evaluation
methods introduced and used in the literature, reliable and
quantitative measure which correlates well with the overall
dehazing quality still lacks. Generally, DHAs can be evaluated
using the following methods:

• Method 1: Qualitative evaluation performed by human
subjects. DHAs are directly tested on real hazy images.

• Method 2: Quantitative evaluation using synthetic hazy
images. FR quality measures are utilized in this method.

• Method 3: Quantitative evaluation using real hazy images.
NR quality measures are needed in this method.

Method 1 and Method 3 follow the same strategy of using
real hazy images, while Method 2 follows another strategy of
using synthetic hazy images.

An overview of the above evaluation methods has been
given in Section I. The advantages and drawbacks of these
methods are also discussed. Method 1 is reliable and accurate,
but it is difficult to conduct large scale evaluation. Method 2
is easy to follow, but DHA evaluation using this method may
not be an exact FR IQA problem [24]. Moreover, synthetic
haze may be different from real haze. Method 3 is desirable,
but effective NR quality measure is needed, which motivates
us to construct the DHQ database and propose the DHQI.
More comparison of Method 2 and Method 3 is given in the
following section.

Fig. 9. Problem of using the haze-free image as the ground-truth: the dehazed
image may not be so close to the reference haze-free image, but it still has
high perceptual quality. Two examples are shown in this figure.

B. Comparison of Quantitative DHA Evaluation
Using Real and Synthetic Hazy Images

Both Method 2 and Method 3 can be utilized for quantitative
dehazing quality evaluation. Current literature generally selects
one of them for quantitative evaluation. Due to the conve-
nience of conducting evaluation and comparison, Method 2 has
been widely utilized [11], [12], [14], [15], [24]. Some basic
FR IQA measures like PSNR and SSIM [28] are directly
used in these papers. A comprehensive study of this method
is conducted in [24]. As illustrated in Fig. 8, state-of-the-art
FR IQA measures are not effective enough. The main reason
is that closing to the haze-free image can guarantee a pretty
good dehazing quality, but some dehazed image still has good
perceptual quality though it is not so close to the reference.
This problem is easily observed in Fig. 9. We have considered
this problem, incorporated some haze-aware features, and
proposed an effective measure for this strategy in [24]. As
described in Section I and illustrated in Fig. 1, another problem
of Method 2 lies in that real haze may be different from the
synthesized haze. Few work has discussed this problem before.
In this section, we will test the effectiveness of using synthetic
hazy images through subjective evaluation data.

Method 3 is a more straightforward way, but it is not easy
to conduct quantitative evaluation due to its NR nature and the
complexity of dehazing. Due to the lack of reliable measures,
it is less used in [7]. As described in Section I, though some
measures are proposed for this objective [20], [21], [23], they
do not correlate well with the overall dehazing quality. The
proposed DHQI evaluates the dehazed image from an overall
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Fig. 10. A comparison of subjective DHA evaluation results using two different strategies. The two databases share 6 DHAs, and the same color indicates
the same DHA. (a) The DHQ database (using real hazy images). (b) The SHRQ database (using synthetic hazy images).

quality perspective of view, and provides an effective measure
for this strategy.

We use the subjective evaluation data collected in the DHQ
and SHRQ (regular image subset) databases to analyze the
effectiveness of the strategy of using synthetic hazy images.
Specifically, we calculate the mean and std of the MOSs
of all dehazed images generated from the same DHA, and
illustrates the results in Fig. 10. The mean MOS is used
as the ground-truth quality of the DHA. Berman16 [13] and
Cai16 [14] are two DHAs not considered in the DHQ data-
base. The two databases share 6 DHAs, i.e., Fattal08, Tarel09,
Meng13, He09, Lai15, and Xiao12. We compare the evaluation
results of the shared DHAs, and analyze the consistency of
the two databases. On synthetic hazy images, the relative
performance rank of the shared DHAs is

Fattal08 < Lai15 < Tarel09 < Meng13 < He09 <
Xiao12.
While on real hazy images, the rank becomes

Fattal08 < Tarel09 < Meng13 < He09 < Lai15 <
Xiao12.

It is observed that on one hand, 5 of 6 DHAs share the same
rank using these two different evaluation strategies, which
indicates that using synthetic hazy images is reliable to a
certain degree. On the other hand, the last DHA Lai15 per-
forms not well on synthetic hazy images, but it shows pretty
good performance on real hazy images, which suggests that
using synthetic hazy images may not be so accurate due to
the differences between real and synthetic haze.

C. Suggestions on Systematic DHA Quality Evaluation

Current papers generally perform qualitative evaluation
using several examples, and then select one from Method 2
and Method 3 to conduct quantitative evaluation. We sug-
gest keeping the qualitative evaluation, and using both quan-
titative evaluation methods for an overall and systematic
DHA evaluation. Owing to the availability of the reference,

FR DHA evaluation is usually more stable than the NR one.
But considering that different DHAs have different abilities
to transfer from synthetic haze to real haze, evaluation on
real hazy images is still needed. We think that the quali-
tative evaluation and the quantitative evaluation using both
synthetic and real hazy images together can give a more
systematic evaluation, while the proposed DHQI provides
an effective measure for the strategy of using real hazy
images.

VI. CONCLUSION

Though DHAs can be evaluated using synthetic hazy
images, this strategy may not be reliable due to the differences
between synthetic haze and real haze. In this paper, we evalu-
ate DHAs by assessing the quality of real dehazed images
directly and study this strategy systematically. As a major
contribution, we first construct a dehazing quality (DHQ)
database, which is the largest of its kind and includes
1,750 dehazed images generated from 250 hazy images of
various haze densities. A subjective quality evaluation study
is then conducted. Considering that the key objectives of
dehazing is to remove the haze, preserve the intrinsic image
structures, and prevent over-enhancement, we propose an
objective dehazing quality index (DHQI) by extracting and
integrating 3 groups of features which are responsible for the
above 3 objectives. DHQI is validated on the constructed DHQ
database, and besides that, DHQI shows certain prediction
ability for dehazed images generated from synthetic hazy
images. The proposed DHQI is another key contribution of this
paper, and it can be utilized to evaluate DHAs quantitatively
and optimize practical dehazing systems. The last contribution
lies in that we give an overview and discussion of DHA quality
evaluation methods. Based on subjective data, we suggest that
the qualitative evaluation and the quantitative evaluation using
both synthetic and real hazy images together can give an
overall and systematic evaluation of the DHAs.
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